Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 34, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429889

RESUMO

Intervertebral disc (IVD) degeneration and herniation is a leading cause of disability globally and a large unmet clinical need. No efficient non-surgical therapy is available, and there is an urgency for minimally invasive therapies capable of restoring tissue function. IVD spontaneous hernia regression following conservative treatment is a clinically relevant phenomenon that has been linked to an inflammatory response. This study establishes the central role of macrophages in IVD spontaneous hernia regression and provides the first preclinical demonstration of a macrophage-based therapy for IVD herniation. A rat model of IVD herniation was used to test complementary experimental setups: (1) macrophage systemic depletion via intravenous administration of clodronate liposomes (Group CLP2w: depletion between 0 and 2 weeks post-lesion; Group CLP6w: depletion between 2 and 6 weeks post-lesion), and (2) administration of bone marrow-derived macrophages into the herniated IVD, 2 weeks post-lesion (Group Mac6w). Herniated animals without treatment were used as controls. The herniated area was quantified by histology in consecutive proteoglycan/collagen IVD sections at 2 and 6 weeks post-lesion. Clodronate-mediated macrophage systemic depletion was confirmed by flow cytometry and resulted in increased hernia sizes. Bone marrow-derived macrophages were successfully administered into rat IVD hernias resulting in a 44% decrease in hernia size. No relevant systemic immune reaction was identified by flow cytometry, cytokine, or proteomic analysis. Furthermore, a possible mechanism for macrophage-induced hernia regression and tissue repair was unveiled through IL4, IL17a, IL18, LIX, and RANTES increase. This study represents the first preclinical proof-of-concept of macrophage-based immunotherapy for IVD herniation.

2.
Aging Cell ; 22(8): e13873, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254638

RESUMO

Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Núcleo Pulposo/metabolismo , Antígeno CD146/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Envelhecimento/metabolismo
3.
Biomater Adv ; 143: 213192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403438

RESUMO

With the lack of effective treatments for low back pain, the use of extracellular matrix (ECM)-based biomaterials have emerged with undeniable promise for IVD regeneration. Decellularized scaffolds can recreate an ideal microenvironment inducing tissue remodeling and repair. In particular, fetal tissues have a superior regenerative capacity given their ECM composition. In line with this, we unraveled age-associated alterations of the nucleus pulposus (NP) matrisome. Thus, the aim of the present work was to evaluate the impact of ECM donor age on IVD de/regeneration. Accordingly, we optimized an SDS (0.1 %, 1 h)-based decellularization protocol that preserves ECM cues in bovine NPs from different ages. After repopulation with adult NP cells, younger matrices showed the highest repopulation efficiency. Most importantly, cells seeded on younger scaffolds produced healthy ECM proteins suggesting an increased capacity to restore a functional IVD microenvironment. In vivo, only fetal matrices decreased neovessel formation, showing an anti-angiogenic potential. Our findings demonstrate that ECM donor age has a strong influence on angiogenesis and ECM de novo synthesis, opening new avenues for novel therapeutic strategies for the IVD. Additionally, more appropriate 3D models to study age-associated IVD pathology were unveiled.


Assuntos
Dor Lombar , Núcleo Pulposo , Animais , Bovinos , Matriz Extracelular , Proteínas da Matriz Extracelular , Regeneração
4.
J Mech Behav Biomed Mater ; 129: 105150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272150

RESUMO

Intervertebral disc (IVD) degeneration has been linked to Low Back Pain (LBP) which affects over 80% of the population ranking first in terms of disability worldwide. Degeneration progresses with age and is often accompanied by annulus fibrosus (AF) tearing and nucleus pulposus (NP) herniation. Existing therapies fail to restore IVD function and may worsen AF defects, increasing the risk of reherniation in nearly 30% of patients. Current AF closure options are ineffective, presenting biological or mechanical limitations. Bioadhesives have potential use in this area, however methods to assess performance are limited. Herein, we propose a biomechanical testing method to assess bioadhesives' capacity to seal AF tears. Two candidate bioadhesives to seal AF tears were evaluated; a tough hydrogel adhesive, and a cyanoacrylate-based glue. The adhesion energy at the interface between bovine discs and the tough hydrogel adhesive was quantified using a peel test (n=4). An experimental method to measure the burst pressure of IVDs was then developed. This method was used to quantify the burst pressure of intact (n=7), injured (AF punctured with a 21G needle; n=7), and sealed IVDs (after applying either the tough hydrogel adhesive patch as a sealant; n=5, or the cyanoacrylate-based glue over the AF tear; n=6). The tough adhesive yielded a strong adhesion energy of 239 ± 49 J/m2 during the peel tests. A maximum pressure of 13.2 ± 3.8 MPa was observed for intact discs in the burst pressure tests, which reduced by 61.4% to 5.1 ± 1.5 MPa in the injured IVDs (p < 0.01)). Application of a cyanoacrylate-based glue to injured IVDs did not recover the burst pressure with statistical significance, however, application of the tough adhesive to injured IVDs, restored burst pressure to 12.3 ± 4.5 MPa, which was not significantly different to the intact burst pressures. In this study, a simple biomechanical method to assess the performance of bioadhesives to seal AF tears based upon burst pressure has been established. Using this method it was found that a tough hydrogel adhesive was able to seal an AF injury, such that the IVD burst pressures were similar to those measured in intact specimens. This method can be used to provide a biomechanical assessment of bioadhesives under high magnitude loading and can complement existing cyclic testing methods that are currently used to assess AF closure devices, improving their assessment before clinical use.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Adesivos Teciduais , Adesivos , Animais , Bovinos , Cianoacrilatos , Humanos , Hidrogéis/uso terapêutico
5.
Front Microbiol ; 12: 772127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925279

RESUMO

Indium (In) is a critical metal widely used in electronic equipment, and the supply of this precious metal is a major challenge for sustainable development. The use of microorganisms for the recovery of this critical high-tech element has been considered an excellent eco-friendly strategy. The Rhodanobacter sp. B2A1Ga4 strain, highly resistant to In, was studied in order to disclose the bacterial mechanisms closely linked to the ability to cope with this metal. The mutation of the gene encoding for a DedA protein homolog, YqaA, affected drastically the In resistance and the cellular metabolic activity of strain Rhodanobacter sp. B2A1Ga4 in presence of this metal. This indicates that this protein plays an important role in its In resistance phenotype. The negative impact of In might be related to the high accumulation of the metal into the mutant cells showing In concentration up to approximately 4-fold higher than the native strain. In addition, the expression of the yqaA gene in this mutant reverted the bacterial phenotype with a significant decrease of In accumulation levels into the cells and an increase of In resistance. Membrane potential measurements showed similar values for native and mutant cells, suggesting that there was no loss of proton-motive force in the mutant cells. The results from this study suggest a potential role of this DedA family protein as a membrane transporter involved in the In efflux process. The mutant strain also has the potential to be used as a biotool in bioaccumulation strategies, for the recovery of In in biomining activities.

6.
Appl Microbiol Biotechnol ; 105(8): 3301-3314, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33791837

RESUMO

Aluminium (Al), gallium (Ga), and indium (In) are metals widely used in diverse applications in industry, which consequently result in a source of environmental contamination. In this study, strain Rhodanobacter sp. B2A1Ga4, highly resistant to Al, Ga, and In, was studied to reveal the main effects of these metals on the strain and the bacterial mechanisms linked to the ability to cope with them. An indium-sensitive mutant obtained by random transposon mutagenesis has the feoA gene interrupted. This gene together with the feoB gene is part of the feo operon which encodes a ferrous uptake system (FeoAB). The mutant strain exhibited higher oxidative stress supported by a high concentration of reactive oxygen species (ROS) and low levels of reduced glutathione (GSH) in the presence of metals. The iron supplementation of the growth medium reverted the growth inhibition of the mutant strain caused by Ga and In, significantly reduced the ROS amounts in mutant cells grown in all conditions, and increased its GSH/total glutathione ratio to values similar to those of the native strain. Moreover, the mutant strain when submitted to In increased the production of siderophores. The genome sequence analysis of strain B2A1Ga4 showed a large number of genes encoding putative proteins involved in iron uptake from the cell surface to the cytoplasm. Understanding the bacteria-metal interactions linked to resistance to high-tech metals is relevant to future application of microorganisms in bioremediation and/or biorecovery processes of these metals. KEY POINTS: • The disruption of FeoAB system compromises the bacterial resistance to Al, Ga, and In. • The iron acquisition in Rhodanobacter sp. B2A1Ga4 controls the oxidative stress. • Genome mining of strain B2A1Ga4 reveals several iron transport related genes.


Assuntos
Gálio , Metais Pesados , Alumínio , Proteínas de Bactérias/genética , Índio , Metais Pesados/toxicidade
7.
Sci Rep ; 10(1): 20348, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230153

RESUMO

The use of microorganisms that allows the recovery of critical high-tech elements such as gallium (Ga) and indium (In) has been considered an excellent eco-strategy. In this perspective, it is relevant to understand the strategies of Ga and In resistant strains to cope with these critical metals. This study aimed to explore the effect of these metals on two Ga/In resistant strains and to scrutinize the biological processes behind the oxidative stress in response to exposure to these critical metals. Two strains of Serratia fonticola, A3242 and B2A1Ga1, with high resistance to Ga and In, were submitted to metal stress and their protein profiles showed an overexpressed Superoxide Dismutase (SOD) in presence of In. Results of inhibitor-protein native gel incubations identified the overexpressed enzyme as a Fe-SOD. Both strains exhibited a huge increase of oxidative stress when exposed to indium, visible by an extreme high amount of reactive oxygen species (ROS) production. The toxicity induced by indium triggered biological mechanisms of stress control namely, the decrease in reduced glutathione/total glutathione levels and an increase in the SOD activity. The effect of gallium in cells was not so boisterous, visible only by the decrease of reduced glutathione levels. Analysis of the cellular metabolic viability revealed that each strain was affected differently by the critical metals, which could be related to the distinct metal uptakes. Strain A3242 accumulated more Ga and In in comparison to strain B2A1Ga1, and showed lower metabolic activity. Understanding the biological response of the two metal resistant strains of S. fonticola to stress induced by Ga and In will tackle the current gap of information related with bacteria-critical metals interactions.


Assuntos
Poluentes Ambientais/farmacologia , Gálio/farmacologia , Índio/farmacologia , Serratia/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Eletrônica/instrumentação , Poluentes Ambientais/isolamento & purificação , Poluentes Ambientais/metabolismo , Gálio/isolamento & purificação , Gálio/metabolismo , Humanos , Índio/isolamento & purificação , Índio/metabolismo , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Serratia/crescimento & desenvolvimento , Serratia/metabolismo , Superóxido Dismutase/química
8.
Trends Biotechnol ; 38(9): 947-951, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32466967

RESUMO

In the last decade, intervertebral disc (IVD) decellularization has gained significant attention for tissue regenerative purposes as a successful therapeutic alternative for low back pain (LBP). We discuss the recent advances in IVD decellularization, repopulation, and sterilization procedures, highlighting the major challenges that need to be addressed for clinical translation.


Assuntos
Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/crescimento & desenvolvimento , Regeneração/genética , Engenharia Tecidual , Animais , Materiais Biocompatíveis/uso terapêutico , Matriz Extracelular/transplante , Glicosaminoglicanos/genética , Glicosaminoglicanos/uso terapêutico , Humanos , Disco Intervertebral/patologia , Disco Intervertebral/transplante , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Tecidos Suporte/química
9.
Sci Rep ; 7(1): 11629, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912585

RESUMO

Intervertebral disc (IVD) degeneration is often the cause of low back pain. Degeneration occurs with age and is accompanied by extracellular matrix (ECM) depletion, culminating in nucleus pulpous (NP) extrusion and IVD destruction. The changes that occur in the disc with age have been under investigation. However, a thorough study of ECM profiling is needed, to better understand IVD development and age-associated degeneration. As so, iTRAQ LC-MS/MS analysis of foetus, young and old bovine NPs, was performed to define the NP matrisome. The enrichment of Collagen XII and XIV in foetus, Fibronectin and Prolargin in elder NPs and Collagen XI in young ones was independently validated. This study provides the first matrisome database of healthy discs during development and ageing, which is key to determine the pathways and processes that maintain disc homeostasis. The factors identified may help to explain age-associated IVD degeneration or constitute putative effectors for disc regeneration.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Proteoma , Proteômica , Envelhecimento/metabolismo , Animais , Bovinos , Cromatografia Líquida , Biologia Computacional/métodos , Matriz Extracelular/metabolismo , Disco Intervertebral/ultraestrutura , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Núcleo Pulposo/ultraestrutura , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
10.
J Mater Sci Mater Med ; 28(1): 6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27885573

RESUMO

Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.


Assuntos
Colágeno Tipo II/química , Colágeno/química , Degeneração do Disco Intervertebral/terapia , Nanocompostos/química , Ácido Poliglutâmico/análogos & derivados , Animais , Bovinos , Células Cultivadas , Quitosana/química , Condrócitos/citologia , DNA/química , Ácido Glutâmico/química , Glicosaminoglicanos/química , Humanos , Concentração de Íons de Hidrogênio , Disco Intervertebral/cirurgia , Luz , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Transmissão , Nanotecnologia , Ácido Poliglutâmico/química , Polímeros/química , Regeneração , Espalhamento de Radiação , Eletricidade Estática
11.
Sci Rep ; 6: 33836, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27652931

RESUMO

Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment.

12.
Hum Mol Genet ; 24(20): 5891-900, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26246502

RESUMO

Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell-matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and ßPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), ß1 and ß4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression.


Assuntos
Caderinas/genética , Deleção de Genes , Laminina/genética , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Invasividade Neoplásica , Neoplasias Gástricas/patologia , Neoplasias Gástricas/fisiopatologia , Regulação para Cima
14.
J R Soc Interface ; 12(104): 20141191, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25673296

RESUMO

Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.


Assuntos
Inflamação , Degeneração do Disco Intervertebral/fisiopatologia , Animais , Citocinas/metabolismo , Terapia Genética/métodos , Homeostase , Humanos , Ligantes , Regeneração/fisiologia , Projetos de Pesquisa
15.
Hum Mol Genet ; 23(8): 2094-105, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24293545

RESUMO

E-cadherin (Ecad) is a well-known invasion suppressor and its loss of expression is common in invasive carcinomas. Germline Ecad mutations are the only known genetic cause of hereditary diffuse gastric cancer (HDGC), demonstrating the causative role of Ecad impairment in gastric cancer. HDGC-associated Ecad missense mutations can lead to folding defects and premature proteasome-dependent endoplasmic reticulum-associated degradation (ERAD), but the molecular determinants for this fate were unidentified. Using a Drosophila-based genetic screen, we found that Drosophila DnaJ-1 interacts with wild type (WT) and mutant human Ecad in vivo. DnaJ (Hsp40) homolog, subfamily B, member 4 (DNAJB4), the human homolog of DnaJ-1, influences Ecad localization and stability even in the absence of Ecad endogenous promoter, suggesting a post-transcriptional level of regulation. Increased expression of DNAJB4 leads to stabilization of WT Ecad in the plasma membrane, while it induces premature degradation of unfolded HDGC mutants in the proteasome. The interaction between DNAJB4 and Ecad is direct, and is increased in the context of the unfolded mutant E757K, especially when proteasome degradation is inhibited, suggesting that DNAJB4 is a molecular mediator of ERAD. Post-translational regulation of native Ecad by DNAJB4 molecular chaperone is sufficient to influence cell adhesion in vitro. Using a chick embryo chorioallantoic membrane assay with gastric cancer derived cells, we demonstrate that DNAJB4 stimulates the anti-invasive function of WT Ecad in vivo. Additionally, the expression of DNAJB4 and Ecad is concomitantly decreased in human gastric carcinomas. Altogether, we demonstrate that DNAJB4 is a sensor of Ecad structural features that might contribute to gastric cancer progression.


Assuntos
Animais Geneticamente Modificados/metabolismo , Caderinas/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Mutação/genética , Neoplasias Gástricas/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Western Blotting , Caderinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Citometria de Fluxo , Proteínas de Choque Térmico HSP40/genética , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Técnicas In Vitro , Chaperonas Moleculares/metabolismo , Invasividade Neoplásica , Proteólise , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
16.
FEBS Lett ; 586(18): 2981-9, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22841718

RESUMO

E-cadherin plays a major role in cell-cell adhesion and inactivating germline mutations in its encoding gene predispose to hereditary diffuse gastric cancer. Evidence indicates that aside from its recognized role in early tumourigenesis, E-cadherin is also pivotal for tumour progression, including invasion and metastization. Herein, we discuss E-cadherin alterations found in a cancer context, associated cellular effects and signalling pathways, and we raise new key questions that will impact in the management of GC patients and families.


Assuntos
Caderinas/metabolismo , Neoplasias Gástricas/metabolismo , Adesão Celular , Mutação em Linhagem Germinativa , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/isolamento & purificação , Humanos , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
17.
Biochim Biophys Acta ; 1826(2): 297-311, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22613680

RESUMO

E-cadherin and P-cadherin are major contributors to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining integrity and homeostasis in adult tissues. It is now generally accepted that alterations in these two molecules are observed during tumour progression of most carcinomas. Genetic or epigenetic alterations in E- and P-cadherin-encoding genes (CDH1 and CDH3, respectively), or alterations in their proteins expression, often result in tissue disorder, cellular de-differentiation, increased invasiveness of tumour cells and ultimately in metastasis. In this review, we will discuss the major properties of E- and P-cadherin molecules, its regulation in normal tissue, and their alterations and role in cancer, with a specific focus on gastric and breast cancer models.


Assuntos
Caderinas/fisiologia , Neoplasias/patologia , Neoplasias da Mama/patologia , Caderinas/genética , Feminino , Estruturas Genéticas , Humanos , Invasividade Neoplásica , Neoplasias/tratamento farmacológico , Transdução de Sinais , Neoplasias Gástricas/patologia
18.
Gut ; 61(8): 1115-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22052064

RESUMO

BACKGROUND: Gastric cancer (GC) is a highly prevalent disease, being the fourth most common cancer and the second leading cause of cancer-associated deaths worldwide. Although many genes have been implicated in its development, many cases remain genetically unexplained. Hence, there is an urgent need to find new disease-related genes. METHODS: A transgenic Drosophila model was used to screen for novel genes putatively involved in GC. The authors evaluated the expression of the most interesting candidates in GC cell lines and primary tumours by semi-quantitative reverse transcription PCR, dissected the molecular mechanisms responsible for the deregulation of the most relevant one, and analysed its functional role in vitro and in a chicken embryo model. RESULTS: Six candidate genes were identified, of which cytoplasmic polyadenylation element binding protein 1 (CPEB1) was downregulated in all GC cell lines and in 11 of 12 primary GC tumours. The pivotal CPEB1 promoter CpG site was determined, and it was found that methylation at this 79th CpG site was associated with CPEB1 silencing in GC cell lines and primary tumours. It was also discovered that methylation of this site was significantly more prevalent in diffuse type GC (p=0.007) and in cases with lymph node metastases (p=0.042). In vitro, CPEB1 impaired invasion. Its antiangiogenic role was also discovered, which was associated with downregulation of MMP14 and VEGFA. CONCLUSIONS: The first evidence of CPEB1 involvement in GC is presented, along with the molecular mechanism underlying the regulation of its expression and its potential role in invasion and angiogenesis.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Experimentais/genética , RNA Neoplásico/genética , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Metilação de DNA , Proteínas de Drosophila/biossíntese , Inativação Gênica , Humanos , Imuno-Histoquímica , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Transcrição/biossíntese , Fatores de Poliadenilação e Clivagem de mRNA/biossíntese
19.
Int J Dev Biol ; 53(8-10): 1557-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19247957

RESUMO

Mutations in the CDH1 gene, which encodes the cell adhesion molecule E-cadherin, are associated with hereditary diffuse gastric cancer in humans. Although most of the CDH1 mutations found are truncating, leading to non-functional E-cadherin, some are missense. These missense E-cadherin mutants result in full-length proteins which, when assayed in cell culture, still retain some biological activity. In order to understand the molecular causes of the malfunction of the E-cadherin missense forms found in patients, we developed a Drosophila model, where the effects of expressing the mutant forms can be studied in vivo (Pereira et al., 2006). Here, we review the results obtained so far, and outline possible ways of exploiting the fly model system to screen for pathways affected by specific E-cadherin missense mutant forms and to identify mechanisms that contribute to tumourigenesis.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Mutação de Sentido Incorreto , Neoplasias Gástricas/genética , Animais , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
20.
Development ; 136(5): 761-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19176582

RESUMO

Wnt molecules act as mitogenic signals during the development of multiple organs, and the aberrant activity of their pathway is often associated with cancer. Therefore, the production of Wnts and the activity of their signaling pathway must be tightly regulated. We have investigated the mechanisms of this regulation in the Drosophila hinge, a domain within the wing imaginal disc that depends on the fly Wnt1 ortholog wingless (wg) for its proliferation. Our results uncover a new feedback loop in the wg pathway in which the spatially restricted activation of the Sox gene SoxF (Sox15) by wg represses its own transcription, thus ensuring tight regulation of growth control. rotund, a wing proximodistal patterning gene, excludes SoxF from a thin rim of cells. These cells are thus allowed to express wg and act as the source of mitogenic signal. This novel mode of action of a Sox gene on the Wnt pathway -- through transcriptional repression of a Wnt gene -- might be relevant to human disease, as loss of human SoxF genes has been implicated in colon carcinoma.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proliferação de Células , Primers do DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Humanos , Modelos Biológicos , Fatores de Transcrição SOXF/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...